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Abstract: The multi-armed bandit (MAB) problem has gained interest in reinforcement learning and 
other areas due to its wide applications. Many algorithms for the MAB problem have been proposed. 
This paper discusses the three most common algorithms for the MAB problem: ε-greedy algorithm, 
upper confidence bound algorithm, and Thompson sampling algorithm. Since the performance, in 
terms of expected returns, of these algorithms is critical when deciding which algorithm to use, this 
paper analyzes the trends and properties of the regret function of these algorithms to compare their 
performance by stimulations. It is suggested that the Thompson sampling algorithm usually shows 
the best algorithm among the three algorithms based on the simulation performed.  

1. Introduction 
The multi-armed bandit (MAB) problem [1] describes a gambler facing a row of slot machines with 

multiple arms, each with a different chance of winning. The gambler needs to decide how to get the 
most rewards by choosing other machines within a limited number of times. When there are just a few 
slot machines, the gambler can simply play each slot machine many times and find the machine with 
a relatively higher probability of winning and then play that machine in future games to win more 
rewards. However, when there are many slot machines or when the gambler has a small number of 
games, this method can take expensive costs and usually gives poor total rewards. It is also notable 
that, in each round of play, the probability of winning is sampled from the probability distribution of 
the individual arms, which is independent of the gambler's previous actions. An important factor 
affecting the MAB problem's success is finding a good trade-off between exploration and exploitation 
[2]. Due to the nature of the MAB problem, it has various applications in statistics [3], reinforcement 
learning [3], operation research [4], biological research [5], and business management [6], so it has 
attracted increasing interest in research in many areas. 

As mentioned above, the standard type of MAB problem is when the gambler faces a number of 
slot machines in which each machine has a different but fixed chance of winning. Another notable 
MAB problem is the multi-armed bandit problem with a known trend [7]. The multi-armed bandit 
problem with a known trend is when the gambler faces several slot machines, each following a known 
trend reward function. The gambler must decide which machine to play in this changing environment. 
This type of MAB problem adds complexity to the algorithm design and analysis. In addition, the 
MAB problem with known trend has various applications in the real world. In recent research [7], 
scientists are motivated by applications in music recommendation and active learning to propose a 
modified algorithm to be used in the MAB problem with known trends. Another MAB problem critical 
in terms of application is the MAB problem with covariates [8]. Compared with the standard static 
MAB problem, the multi-armed bandit problem with covariates is in a dynamic setting in which each 
machine has a noisy reward realization depending on an observed random covariate. A multi-armed 
bandit problem with covariates more appropriately describes the situation with dynamically changing 
rewards and thus is more suitable for applications where side information can be involved. 

MAB problems have many applications in real life. One notable research proposes a picture-based 
decision support system called DSSApple to help identify apple diseases [5]. This system is based on 
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the concept and algorithm of contextual MAB problems. Specifically, DSSApple uses past interactions 
with the system and its user-provided information and consistently updates the decision model to 
empower decision-making accuracy. The idea of MAB problems can also be applied to applications 
in quantitative finance. In recent years, sequential portfolio selection has become a popular investment 
tool [9]. The primary difficulty in sequential portfolio selection is to achieve a balance between risk 
and return under uncertainties. This idea is similar to the concept of exploration versus exploitation in 
the MAB problem. Thus many mathematicians in the field of quantitative finance have started to apply 
the algorithm of sequential decision making based on concepts of the MAB problem to address the 
challenge of achieving a balance between risk and return in sequential portfolio selection [10]. Risk 
awareness and topological structure of the financial market have been considered in the algorithm 
constructing portfolio, which is a modification of optimal MAB policy. In addition, the application of 
MAB problems in recommendation system services, such as online news, advertising, and 
merchandise selection, has gained attention due to its capability of leveraging contextual information. 
Potential implementations of MAB in robotics state estimation [11] and control [12] are also shown, 
such as multi-target search [13]. In the theoretical analysis, the application of MAB problems usually 
involves the assumption of the existence of a reward mapping function. This reward mapping function 
is fixed but, in practice, is typically unknown. In fact, in real-life applications, this reward mapping 
function has to deal with those variables that are dynamically evolving over time. Thus, research in 
reward mapping functions modeled as a set of random walk particles gained popularity in recent years. 
Those random particles are used to learn the mapping process dynamically, so this method is able to 
effectively capture the context change in real life and make a recommendation accordingly. 

Due to the popularity of MAB in practical applications, there are many researchers proposed 
solutions and algorithms [14] to MAB problems. Upper confidence bound (UCB) algorithm, ε-greedy 
algorithm, and Thompson sampling (TS) will be discussed in this paper. One classic algorithm to 
address MAB problems is the ε-greedy algorithm. As mentioned above, the MAB problem is a 
problem about exploration and exploitation. The ε-greedy algorithm [15] is a method that chooses 
between exploration and exploitation randomly in order to achieve a balance between exploration and 
exploitation. ε is the probability of exploration, and usually, it is small. Therefore, through the process 
of exploration and exploitation, the ε-greedy algorithm selects the highest reward most of the time, but 
still, there is the flexibility of exploring. While the ε-greedy algorithm selects an action with a 
probability of exploration, another algorithm that addresses the MAB problem, the Upper Confidence 
Bound [16], changes the balance between exploration and exploitation through the learning process. 
The first stage of the UCB algorithm primarily focuses on exploration. When the algorithm gradually 
gathers the context and setting of the problem, it will change its strategy to exploitation. In the 
exploitation process, the algorithm will select the action with the highest reward based on the learning 
from the environment. TS algorithm [17] is also a solution to the MAB problem. TS algorithm is a 
sampling method that samples each machine's probability distribution to produce the highest reward. 
The basic idea of the TS algorithm is that in each round, it samples the parameters from the posterior 
distribution based on the posterior belief about the unknown parameters [8]. This sampling parameter 
produces a set of expected returns for each machine, and the machine with the highest expected return 
has been determined. Specifically, the TS algorithm considers Beta-Bernoulli Bandit such that the 
prior distribution is a beta distribution, the distribution of each machine reward is a Bernoulli 
distribution [18] with parameters, and the posterior distribution also follows a beta distribution [19]. 
In practice, the TS algorithm usually gives a lower total regret [20] than the ε-greedy algorithm and 
UCB algorithm [21]. TS algorithm also has an extensive range of applications, such as web page 
recommendation problems [22] or even chemical molecular screening problems [23]. Therefore, the 
study of the TS algorithm has always been a valuable topic in reinforcement learning.  

Since the performance of MAB algorithms is crucial when deciding which algorithm to use, this 
paper will analyze the regret function of the ε-greedy algorithm, UCB algorithm, and TS algorithm. 
This paper will first introduce the mathematical background of the MAB problem and the algorithms 
in general. Further, this paper will analyze the regret function of the algorithms in many aspects: the 
formulas, properties, and comparisons among the three algorithms. In addition, this paper will run 
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stimulation to further analyzes the trends of regret function of the three algorithms in a general MAB 
problem setting. 

2. Solutions to MAB Problems 
2.1 MAB Formulation 

Suppose the gambler is given N slot machines. The gambler must play a slot machine each round. 
Each machine has a probability that gives a random reward; when the gambler plays any slot machine 
n, the machine will give a random reward based on some unknown distribution in [0, 1]. As discussed 
above, each play is independent, so the random rewards are independently identically distributed. 
Suppose there are i = 1, 2, 3, … round. The challenge for the gambler is to decide which slot machine 
to play in ith round based on the rewards received in all previous rounds. Therefore, the goal for the 
gambler is to maximize the expected total reward in a fixed number of rounds. An equivalent measure 
to analyze is the expected total regret [20]. The regret is the reward that the gambler loses due to not 
playing the optimal machine. For the total I round, the regret function, R(I), can be defined as:  

 𝑅𝑅(𝐼𝐼) =  ∑ (𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑚𝑚),𝐼𝐼
𝑚𝑚=1                          (1) 

Where 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the optimal expected reward in ith play, and 𝜇𝜇𝑚𝑚 is the actual expected reward in 
ith play. Then the goal for the gambler becomes minimizing the expected total regret, that is, to 
minimize: 

 Ε(𝑅𝑅(𝐼𝐼)) =  Ε(∑ (𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑚𝑚))𝐼𝐼
𝑚𝑚=1 .                         (2) 

2.2 ε-greedy Algorithm 
The ε-greedy algorithm is a method that sets an ε value between 0 and 1 that decides whether the 

gambler is to explore (try a new slot machine) or to exploit (play a machine that is previously played). 
For example, ε is set to 𝑎𝑎, then 100𝛼𝛼% of the rounds are devoted to exploration, and 100(1-𝛼𝛼)% of 
the rounds are used to exploit. Each gambler plays, the gambler should draw a random number from 
0 to 1. If the number is greater than ε, then the gambler should play the machine with the highest 
probability of winning (estimated probability of winning) based on previous rewards. If it is less than 
ε, select another machine at random, then update the estimated winning probability of this machine at 
the same time for future reference. The problem with the ε-greedy algorithm is that the estimated 
probability of winning for a slot machine varies with the number of times the drawbar is played. If a 
machine is not played at all, the estimated probability of winning for that machine does not change. 
Therefore, the accuracy of the estimated probability of a machine is based on how many times the 
gambler played that machine. Based on this property, the ε-greedy algorithm will still choose a non-
optimal machine due to the chance of exploitation. Therefore, the number of plays of the optimal 
machine is not maximized. Hence the expected total reward is usually not maximized neither. 

2.3 Upper Confidence Bound Algorithm 
While the ε-greedy algorithm uses the estimated probability of winning as a criterion to play a 

machine, called blind choice, the UCB algorithm chooses a machine to play based on its potential 
probability of winning. The UCB algorithm dynamically changes its balance of exploration and 
exploitation as more round is played; that is, more knowledge of the game context is learned through 
the process of playing. Using this idea, the machine that should be played during ith round, 𝑀𝑀𝑚𝑚, can be 
modeled as [21]: 

 𝑀𝑀𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑄𝑄𝑚𝑚(𝑎𝑎) + 𝑐𝑐� log 𝑚𝑚
𝑁𝑁𝑖𝑖−1(𝑚𝑚)�,                          (3) 

Where 𝑄𝑄𝑚𝑚(𝑎𝑎) denotes the the machine with highest estimated reward m, 𝑁𝑁𝑚𝑚−1(𝑎𝑎) denotes the 
number of plays of machine m during the 1st play to the (i-1)th play, and c is the confidence level. The 
first part (term) of equation (3), 𝑄𝑄𝑚𝑚(𝑎𝑎) presents “exploitation”. The UCB algorithm will choose a 
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machine with highest estimated reward during previous plays if machine with highest reward is unsure. 
The second part of equation (3) represents “exploration”. The confidence level c controls the level of 
exploration. Based on this equation, if the number of plays of a certain machine is relatively small, 
then this machine is more likely to be selected. The reason is that if the machine is not relatively 
frequently selected, the 𝑁𝑁𝑚𝑚−1(𝑎𝑎), the number of plays that the machine is selected during previous 
rounds, is small. The smaller 𝑁𝑁𝑚𝑚−1(𝑎𝑎) will make a larger value of the fraction. Therefore, the 
uncertainty is large so this machine is more likely to be selected. As more round is played, the selection 
of machine is more based on the exploitation since the exploration term will gradually decreases and 
converges to 0 as the number of rounds approaches to infinity. 

2.4 Thompson Sampling Algorithm 
While the ε-greedy and UCB algorithm selects the machine based on the reward during previous 

rounds, the TS algorithm builds a probabilistic model from the reward obtained that improves the 
average reward. Therefore, the estimated reward is more accurate as more round is played. TS 
algorithm samples from the probabilistic model in order to make a decision. The simplest context is 
when the TS algorithm deal with Bernoulli distribution. Assume that there are two outcomes of a 
machine being played: 

 �
1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑒𝑒 ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟,

0, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑒𝑒 𝑟𝑟𝑑𝑑𝑒𝑒𝑎𝑎𝑖𝑖′𝑡𝑡 ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟.                     (4) 

This means the reward only has two values: 1 if the machine has a reward or 0 if the machine has 
no reward. Based on this Bernoulli model, the TS algorithm is able to find the machine with the highest 
probability of giving a reward instead of finding the machine with the highest reward. However, in 
practice, the context of problems is not as obvious as Bernoulli distribution. Therefore, the TS 
algorithm needs to consider the probabilistic model of the reward for each machine using Beta 
distribution since the reward is binary. Beta distribution is ideal for the TS algorithm:  

 𝑖𝑖𝑋𝑋(𝑎𝑎) = 1
𝐵𝐵(𝛼𝛼,𝛽𝛽) 𝑎𝑎

𝛼𝛼−1(1− 𝑎𝑎)𝛽𝛽−1, 0 < 𝑎𝑎 < 1,                    (5) 

Where 𝐵𝐵(𝛼𝛼,𝛽𝛽) is the beta function: 

 𝐵𝐵(𝑎𝑎, 𝑡𝑡) = ∫ 𝑎𝑎𝑠𝑠−1(1 − 𝑎𝑎)𝑡𝑡−11
0 = Γ(𝑠𝑠)Γ(𝑡𝑡)

Γ(𝑠𝑠+𝑡𝑡)
, 𝑎𝑎, 𝑡𝑡 > 0.                 (6) 

At the beginning, the gambler has no prior knowledge about the machine, so the initial setting of 
the two paramters 𝛼𝛼 and 𝛽𝛽 is 1. This gives a flat uniform distribution model. This initial setting is 
also called prior probability [20]. The prior probability defines the probability of an event occurring 
before the algorithm gathers knowledge from it, which is the initial setting. Once the algorithm have 
gathered knowledge about the winning probability of a certain machine, the algorithm is able to update 
paramters 𝛼𝛼 and 𝛽𝛽 to obtain a new probability. This is called posterior probability [24]. In beta 
distributions, the parameter 𝛼𝛼 represents the number of “success” (the number of times of the slot 
machine gives rewards) and the parameter 𝛽𝛽 represents the number of “failures” (the number of times 
of the slot machine does not give rewards). If a machine gives a reward, then 𝛼𝛼 will increase by 1; if 
a machine doesn not give a reward, 𝛽𝛽 will increase by 1. Therefore, as number of plays increases, the 
beta distribution model will become more accurate to estimate the expected total reward. Thus the TS 
algorithm is able to describe the estimated expected total reward based on the prior probability model 
and posterior probability model by taking samples from the beta distribution of each machine and 
choosing the machine with the highest reward among discovered machines and locating the near-
optimal slot machine. 

3. Regret Analysis of MAB Algorithm 
The performance of a MAB algorithm can be evaluated by the total expected reward. The higher 

total expected reward means the algorithm is closer to the optimal solution. As discussed above, an 
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equivalent measure of the total expected reward is the total expected regret. As the term regret suggests, 
when the gambler makes a choice about which machine to play, there is no way to know in advance 
whether the specific machine gives the most reward or not. However, the total expected regret can be 
used to compare the selection policy given by the algorithm against the optimal situation. To assess 
the performance of a multi-armed algorithm in a practical setting, if the regret function is constant or 
increases slowly, it can be concluded that the algorithm has relatively optimal performance in terms 
of maximizing total reward. 

To maximize the reward, the algorithm needs to minimize the total expected regret, as noted in 
equation (2). The arm gives the most reward is denoted as 

 𝑎𝑎∗ = maxΕ[𝑊𝑊𝑚𝑚|𝐴𝐴𝑚𝑚 = 𝑎𝑎],                           (7) 

Where 𝑊𝑊𝑡𝑡 is the reward given at round i and the arm 𝑎𝑎∗ maximizes the the expected reward at 
step i. As noted above, the TS algorithm involves posterior probability distribution. The posterior 
probability distribution of machine that the gambler plays at round i can be defined as  

 𝑖𝑖(𝑎𝑎𝑚𝑚) = 𝑃𝑃(𝑎𝑎∗ = 𝑎𝑎𝑚𝑚|𝐻𝐻𝑚𝑚).                             (8) 

This is a conditional distribution where the machine played at round i is conditioning on 𝐻𝐻𝑚𝑚, the 
historical information distribution [22] on rewards from round 1  to 𝑖𝑖 − 1 . For each round the 
gambler plays a machine, the TS algorithm will sample from this distribution. Based on the context of 
MAB problem, the machines are independent from each other. It is further notable that the optimal 
machine 𝑎𝑎∗ and the machine that the gambler played 𝑎𝑎𝑚𝑚 are independently identically distributed 
since each machine is indepdent from each based on the context of MAB problem. 

Since the posterior probability distribution of a machine follows a conditional distribution. 
Specifically, the probability that a machine gives a reward (assume the machine is in Bernoulli setting) 
depends on the historical information collected during previous rounds, on the probability that 
machines played before round i. If the number of machines is small, the algorithm is able to quickly 
identify the machine with the highest probability that gives a reward and continues to choose that 
machine. Therefore, the regret is nearly zero. However, if the number of machines is fairly large or if 
the gambler has a limited number of rounds, the TS algorithm faces the trade-off between choosing 
the optimal machine among the historical information and continue exploring more untested machines. 
Therefore, the regret varies each round and continues to increase until the algorithm finds the optimal 
machine. Once the algorithm finds the optimal machine, the gambler will choose this machine for the 
rest rounds. Therefore, the regret becomes zero as the the optimal expected reward 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is 
equivalent to the actual expected reward 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . Secifically, the regret function of TS algorithm 
follows logarithmic regret [17]. The logarithmic regret function starts to increase as the algorithm has 
no prior or little information about the probability of machines giving a reward. Once enough historical 
information about the probability distributions is collected, the regret function becomes more stable. 
The regret function starts to swing, either increasing or decreasing in a small range, depending on the 
difference between optimal expected reward and actual expected reward. During this period, the regret 
function will reach its maximum. After that, the regret function starts to decrease since, as more 
machines are explored, the algorithm chooses the most optimal machine among a big portion of the 
machines. This results in the actual reward increasing, so the regret decreases. Once the algorithm 
explores all the slot machines and finds the machine that gives the most rewards, the difference 
between optimal expected reward and actual expected reward becomes zero; the regret function falls 
to zero. This is consistent with the property of the logarithmic regret function which the values of 
regret falls to zero as more rounds are played. However, this property assumes that the gambler has 
enough rounds to explore all the machines. In real-world applications, the number of trials is usually 
limited. The next section will show the performance of the TS algorithm with a different number of 
trials to play, including the situation in which there are not enough trials to explore all the machines. 
If the number of machines is small, the algorithm is able to quickly identify the machine with the 
highest probability that gives a reward and continues to choose that machine. Therefore, the regret is 
nearly zero. However, if the number of machines is fairly large or if the gambler has a limited number 
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of rounds, the TS algorithm faces the trade-off between choosing the optimal machine among the 
historical information and continue exploring more untested machines. Therefore, the regret varies 
each round and continues to increase until the algorithm finds the optimal machine. Once the algorithm 
finds the optimal machine, the gambler will choose this machine for the rest rounds. 

Although all three algorithms solve the MAB problem discussed above share one thing in common: 
they need to balance exploration and exploitation and use different approaches to achieve this balance. 
Therefore, regret is different among these three algorithms. In the ε-greedy algorithm, the action that 
the gambler takes is random. Due to the random exploration-exploitation property of the ε-greedy 
algorithm and the probability of exploration being constant, the regret will start to accumulate in the 
first few rounds and increase linearly. Unlike there is a fixed probability of exploration in the ε-greedy 
algorithm, the UCB algorithm updates its probability of exploration and exploration as it gathers more 
information about the problem’s context. In the early stage of the UCB algorithm, the algorithm has 
no or little prior knowledge about the probability distributions that the machines give reward, so the 
probability of exploring other machines is relatively higher. Therefore, the regret will vary each round, 
but the overall trend increases. As the algorithms get more historical information about the machine’s 
setting and better estimates for the rewards given by each machine are gathered, it will adjust the 
probability of exploration to a lower level. Thus, the chances of playing an optimal machine among 
the discovered machine are higher, which results in a higher expected optimal reward. Hence the regret 
function will gradually decrease. Consequently, the UCB algorithm has a lower level of regret than 
the ε-greedy algorithm has. Further, it is noticed that although the UCB algorithm and TS algorithm 
use different approaches to solve a MAB problem, their trends and regret functions are similar. This 
comparison will be further examined in the next section. 

4. Results and Discussions 
4.1 Simulation 

The performance and trend of the regret functions of the three algorithms for MAB problem have 
been examined by simulation. Let the 𝑁𝑁 denotes the number of slot machines and 𝑇𝑇 denotes the 
number of rounds that the gambler played. Suppose the gambler is facing 500 (𝑁𝑁 = 500) slot machines. 
Each machine gives a random fixed reward from [0,0.1]. The rewards are uniformaly distributed 
between [0,0.1]. The goal for the gambler is to collect as much as reward possible in 1000 rounds 
(𝑇𝑇 = 1000 ). To achieve this goal, the gambler uses the three algorithms (ε-greedy, UCB, and 
Tompson sampling algorithm) discussed previously as stradegies. The common ε value [25] in practice 
is 0.1, so the stimulation also uses 0.1 as the probability that choosing a unvisited slot machine each 
round. In addition, the simulation is repeated for ε = 0.2 and ε = 0.4 for further analysis. All other 
settings remain the same as discussed in previous sections for UCB algorithm and TS algorithm. In 
the stimulations, the regret functions 

 𝑅𝑅(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 − 𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑡𝑡                              (9) 

For the three algorithms are captured, where 𝑅𝑅(𝑡𝑡) denotes the regret function and 𝑡𝑡𝑡𝑡𝑇𝑇, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 
denotes the maximum reward at tth round, and 𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑡𝑡 denotes the actual reward that the gambler gets 
at tth round. For analyzing the trend of regret function of TS algorithm, its stimulation runs again for 
𝑇𝑇 = 3000. The performance of the three algorithms can be campared using the regret functions.  
4.2 Results 
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Fig.1 Regret function for ε-greedy algorithm when 𝜀𝜀 = 0.1, 𝑁𝑁 = 500, and 𝑇𝑇 = 1000. 

 
Fig.2 Regret function for ε-greedy algorithm when 𝜀𝜀 = 0.2, 𝑁𝑁 = 500, and 𝑇𝑇 = 1000. 

 
Fig.3 Regret function for ε-greedy algorithm when 𝜀𝜀 = 0.4, 𝑁𝑁 = 500, and 𝑇𝑇 = 1000. 

 
Fig.4 Regret function for Upper Confidence Bound algorithm when 𝑁𝑁 = 500 and 𝑇𝑇 = 1000. 

97



  

 

 

 
Fig.5 Regret function for Thomson sampling algorithm when 𝑁𝑁 = 500 and 𝑇𝑇 = 1000. 

 
Fig.6 Regret function for Thomson sampling algorithm when 𝑁𝑁 = 500 and 𝑇𝑇 = 3000. 

4.3 Discussion 
As Fig.1 suggested, the regret function of the ε-greedy algorithm increases relatively faster during 

the first approximately 200 rounds. The reason for this relatively more rapid growth occurring at the 
beginning of the graph is that the algorithm has not gained enough information about the rewards given 
by the slot machines. As the algorithms get more information about the slot machine, the rate of 
increase slows down. Then its rate of increasing decreases as more rounds is played. The overall trend 
of the regret function of the ε-greedy algorithm is roughly linear and has a positive slope. In Fig.2, 
when the ε value becomes 0.2, the regret function has a similar trend when ε = 0.1 but reaches a lower 
maximum value at the 1000th round. Therefore, the ε-greedy algorithm with ε = 0.2 shows a greater 
performance than the ε-greedy algorithm with ε = 0.1. However, when ε = 0.4, Fig.3 suggests that the 
regret function of ε-greedy algorithm increases more rapidly and reaches a greater maximum value at 
the 1000th round. A greater ε value adds randomness to the algorithm so choosing a sutible ε value is 
crucial for ε-greedy algorithm. 

In Fig.4, the regret function of the UCB algorithm starts to increase rapidly, and then the rate of 
increasing suddenly slows. This trend changes around the 100th round. Therefore, it can be inferred 
that the algorithm gets enough knowledge about the reward distribution starting around the 100th 
round, so the function begins to change slowly. 

In Fig.5, the regret function of the TS algorithm starts increasing until around the 400th round, and 
then the graph has an overall decreasing rate. Fig.6 further shows this property because the regret 
function further declines as more rounds are played. These two graphs also support the claim of the 
logarithmic property of the TS regret function, where the function initially increases and eventually 
falls to 0. 

Comparing the regret functions for the three algorithms, the regret function of the ε-greedy 
algorithm has the highest range. This means the ε-greedy algorithm accumulates the total regret during 
the 1000 rounds. UCB algorithm also accumulates more regret than the TS algorithm, but the 
difference is not as large as the difference between the ε-greedy algorithm and the UCB algorithm. 
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Further, the regret function of the TS algorithm declines property after certain rounds. The regret 
functions for the other two algorithms don’t show a decreasing trend. In addition, in both of UCB 
algorithm and TS algorithm, the regret functions have an explicit point where the rate of increasing 
becomes slower (or the rate of increasing becomes negative for the TS algorithm). The point where 
the function changes its rate is the round that the algorithm collects enough information about the 
reward distribution. Although the TS algorithm accumulates less regret than the UCB does, the UCB 
achieves this point earlier than the TS algorithm does.  

5. Conclusion and Future Work 
Based on the results and discussions presented above, the conclusions are obtained as below. 
(1) The overall performance for this simulation-based regret analysis can be ranked as: ε-greedy 

algorithm < UCB algorithm < TS algorithm. Therefore, the TS algorithm usually gives the least total 
regret in situations similar to the stimulation above. 

(2) The TS algorithm has a logarithmic regret function. As the number of rounds, the regret function 
of the TS algorithm will eventually decline to 0. This property is useful when the number of rounds is 
fairly large. 

(3) The trend of the regret function of the ε-greedy algorithm continues to increase at the 1000th 
round. Similarly, the trend of regret function of the UCB algorithm continues to grow at the 1000th 
round, but with a significantly lower rate compared to the ε-greedy algorithm. However, the regret 
function of the UCB algorithm is greater than regret function of ε-greedy algorithm before the 500th 
round (roughly). 

It is suggested that further research on regret analysis of MAB problem can be expanded to other 
variants of MAB problems, such as multi-armed Bandit problem with known trends and multi-armed 
bandit problem with covariates as mentioned above. In addition, the mathematical derivation on 
analysis of regret functions is desired. 
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